Graph product

In mathematics, a graph product is a certain kind of binary operation on graphs. Specifically, it is an operation that takes two graphs G1 and G2 and produces a graph H with the following properties:

The following table shows the most common graph products, with ∼ denoting “is connected by an edge to”:

Name Condition for (u1u2) ∼ (v1v2). Dimensions Example
Cartesian product u1 = v1 and u2 ∼ v2 )
or

u1 ∼ v1 and u2 = v2 )

G_{V_1, E_1} \square H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (E_2 V_1 %2B E_1 V_2)}
Tensor product u1 ∼ v1  and  u2 ∼ v2 G_{V_1, E_1} \times H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (2 E_1 E_2)}
Lexicographical product u1 ∼ v1
or
u1 = v1 and u2 ∼ v2 )
G_{V_1, E_1} \cdot H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (E_2 V_1 %2B E_1 V_2^2)}
Strong product
(Normal product, AND product)
u1 = v1 and u2 ∼ v2 )
or
u1 ∼ v1 and u2 = v2 )
or
u1 ∼ v1 and u2 ∼ v2 )
G_{V_1, E_1}  \boxtimes H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (V_1 E_2 %2B V_2E_1 %2B 2 E_1 E_2)}
Co-normal product
(disjunctive product, OR product)
u1 ∼ v1
or

u2 ∼ v2

Rooted product see article G_{V_1, E_1} \cdot H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (E_2 V_1 %2B E_1)}

In general, a graph product is determined by any condition for (u1u2) ∼ (v1v2) that can be expressed in terms of the statements u1 ∼ v1, u2 ∼ v2, u1 = v1, and u2 = v2.

See also

References